• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Test & Measurement Tips

Oscilloscopes, electronics engineering industry news, how-to EE articles and electronics resources

  • Oscilloscopes
    • Analog Oscilloscope
    • Digital Oscilloscope
    • Handheld Oscilloscope
    • Mixed-signal Oscilloscope
    • PC-based Oscilloscopes – PCO
  • Design
  • Calibration
  • Meters & Testers
  • Test Equipment
  • Learn
    • eBooks/Tech Tips
    • FAQs
    • EE Training Days
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Video
    • EE Videos
    • Teardown Videos
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • Leap Awards
    • White Papers
  • Subscribe
You are here: Home / FAQ / Basics of monitoring vs. testing in current, voltage and power

Basics of monitoring vs. testing in current, voltage and power

June 3, 2020 By Lee Teschler 1 Comment

Industrial measurements often must take place via specialized transducers sized specifically for the current and voltage swings involved.

Will Delsman | NK Technologies
Older ammeters worked great when the current flowed at a steady 50 or 60 Hz. Consider the antique GE model 8AK1A1AF. I have one that remains accurate after decades of use and misuse. The nameplate shows “60 Hertz,” denoting its limited scope of applications. Try to get an accurate reading when there is much distortion to the current sine wave shape or if the frequency is anything other than 60 hertz and you are in for a frustrating experience.

Back in the dark ages, test equipment like this old beast utilized a current transformer design based on a toroid. The metal jaws surrounding the conductor were wrapped with many turns of thin copper wire. The magnetic field produced by the ac current caused a voltage to be generated in the wraps, and this small voltage would drive the pointer to display the amount of current present.

ave vs true rms
Average responding transducers are adequate for the measurement of pure sine waves. But the accurate measurement of distorted waveforms as, for example, from variable-frequency motor drives, requires a true RMS transducer.

There was no simple method to detect or measure dc current beyond current shunts.

Present-day ammeters are most often now designed to use hall-effect elements rather than toroids and can accurately measure ac or dc current. The output from the hall element is conditioned to produce an output proportional to the RMS current regardless of the amount of distortion or harmonic component in the monitored circuit.

Test vs. permanent monitoring

Test equipment like handheld ammeters and voltmeters are essential tools, but few have the ability to transmit the readings to a remote location or to store the measurement data for later review. And these abilities are usually necessary for industrial data collection. Usually it is a permanently installed device, known to the trade as a transducer or transmitter, that monitors industrial parameters and produces an output which can be stored at the site or uploaded to a cloud service. These sensors produce an output which is typically connected to and read by a panel meter, HMI, programmable controller, or data acquisition system.

Generally, industrial transducers must be installed in a cabinet for protection against the surrounding environment conditions while also providing a degree of safety against electrical shock and arc flash. These transducers are designed to be as compact as possible and have mounting options that include snapping onto a DIN rail or mounting with screws to a panel.

The current levels involved in many industrial settings are high enough to make the use of current-sensing resistors impractical or ill advised because of thermal issues. Instead, industrial current-measurement sensors typically use induction or Hall effect devices that entail no direct connection to the circuit. These types of devices must have an aperture or sensing window large enough to allow the monitored conductor to pass through easily, and be approved by a third party test lab to be safe when used with the relatively high current and voltage levels that characterize industrial processes.

Continuous voltage measurement

Use of one-piece current and voltage transducers helps keep the necessary panel space at a minimum. In the not too distant past, the production of a signal representing the line-to-line ac voltage–which could be read by a device like a chart recorder–required a high-accuracy ratiometric potential transformer (PT) and a separate “tin can” signal conditioner. The lower voltage from the PT (usually 120 Vac) rose and fell with the line voltage, and the signal conditioner converted the PT secondary to dc milliamps or low-voltage dc. The resulting signal from the conditioner would go to the chart recorder. The resulting changes in the line voltage were graphed by colored ink from pens mounted over a revolving paper circle or long strip of paper. Set up took a steady hand for positioning the pens so they just touch the paper, and the chart recorder had to be well isolated from vibration or the lines could be shaky and inaccurate.

Today, voltage transducers are quite small, even those designed to measure up to 1,500 V. But potentials exceeding this level still need the PT/conditioner approach. Updated designs require two wires for measuring potential, a low-voltage power supply, and two wires carrying the output signal to a data acquisition system, essentially an electronic chart recorder. The measurement data can be read on a display immediately, and the chart can be printed for a permanent physical record. There are no errors from vibration or improper pen installation, and pixels do not run out of ink. In addition, there are fewer components, fewer connections, and less labor to install and calibrate.

Current measurements have followed a similar progression. In times past, a current transformer (CT) was installed and its secondary connected to the conditioner. The signal conditioner would mount a short distance from the installation point to keep the burden on the CT secondary at a minimum for better accuracy. A shorting block would be installed between the CT and signal conditioner. In the event the conditioner had to be taken out of service, this extra step allowed the CT secondary to stay closed while the monitored circuit current continued to power its load. The shorting block was necessary because a CT should never be energized if the secondary is open, with no load connected, as doing so is quite dangerous.

In the same physical space as the ancient CT, a modern one-piece current transducer eliminates the issue of CT-to-conditioner distance, as the two pieces are fractions of an inch apart inside the sensor housing. There is no need for a shorting block as it would be highly unlikely that the CT could separate from its printed circuit boards. There are also no dangerous voltages present between the sensor terminals when there is no load connected to the transducer. The present-day approach is extremely simple, uses two leads for power and either the same pair or two other wires to carry the output signal. This approach is much safer and reduces the number of connection points significantly. Simplicity can be counted on to improve overall reliability.

And of course, it is safer to use test equipment for troubleshooting the data acquisition system than for testing the primary, measured circuit. The sensor outputs are at a much lower voltage, but testing must still take place while the monitored circuit is energized to confirm the accuracy of sensor output.

sensor app
An RMS-responding current sensor will produce a signal directly proportional to the current that an industrial load uses. DC current transducers generally employ Hall effect sensors to detect dc currents and cover ranges from 0–5 to 0–2,000 A, with a variety of outputs available to interface with panel meters, programmable logic controllers or building energy management systems. Such sensors can be used to monitor any dc signal to 600 V and carry the UL logo.

When the transducer output produces a “live zero” as with a 4-20 mA output, the 4 mA can be read with many multi-meters on the low dc current setting by simply disconnecting the transducer output at the load (panel meter, PLC, etc.), and connecting the test leads in series between the output and the load. The sensor output will still read 4 mA if the rest of the connections remain in place, including the power supply to the sensor.

Scaling test

When troubleshooting a transducer, regardless of what property the transducer will measure, make sure to understand what the output should be for a given amount of the measured property. We will use a current transducer as an example:

Use an ammeter to see how much current gets delivered to the load.
Check the current transducer range to ascertain how much current constitutes the maximum output from the transducer.
Calculate the expected sensor output. For example, suppose a transducer produces 10 Vdc when current rises to 50 A. Divide the output (10 Vdc) by the range: 10/50 or 1/5. So there is 1 V of output signal for every 5 A used. Thus 25 A will create a 5-Vdc output. Another way to arrive at the correct answer: Take the reading from the hand ammeter and divide it by the range, 25/50 = 0.50. Then use that result to show the transducer output: 10 x 0.5 = 5 Vdc. Half the range value will produce half the output value. Thus if the current measured is 37.50 A, multiply by 0.20 and verify that the transducer output is 7.5 V.

The same approach is used when the transducer has the “live-zero” output, but the output signal when there is zero current (or voltage, or whatever you are measuring) must be included in the calculation. This is referred to as signal offset.

With any analog signal produced by a transducer or transmitter, the device receiving the output (data acquisition system, panel display, PLC, etc.) must be set up so it understands what the output means. For example, a 4-20 mA transducer signal produces a range of 16 mA (20-4). Since the example above describes a 0-50 range, the relationship is 16/50 or 0.32 mA/A. A load of 37.50 A causes a change in the transducer output of 12 mA (0.32×37.50). So, with the signal offset value added, the transducer output should be 12 mA + 4 mA = 16 mA.

If the need is for benchtop measurements, there are many choices available for ac or dc circuits, current and voltage. If, on the other hand, the need is to store and analyze these measurements, a more permanently installed transducer set will be the best solution.

You may also like:


  • Working with scope-based spectrum analyzers
  • SWR
    The difference between SWR and TDR meters
  • ammeter setup
    How to measure current and energy use accurately
  • USB plugs
    What’s new in USB Power Delivery 3.0

Filed Under: FAQ, Featured, Instrumentation, Sensing Tagged With: FAQ, nktechnologies

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

Primary Sidebar

Featured Contributions

Why engineers need IC ESD and TLP data

Verify, test, and troubleshoot 5G Wi-Fi FWA gateways

How to build and manage a top-notch test team

How to use remote sensing for DC programmable power supplies

The factors of accurate measurements

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE TRAINING CENTER

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“test
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

  • Wireless microphone reviews
  • audio transformers impedance
  • ISL8117 buck converter blowing up
  • Help Creating .lib File for SCR in LTspice
  • Editing posts

RSS Current Electro-Tech-Online.com Discussions

  • RS485 bus: common ground wire needed or not?
  • Kawai KDP 80 Electronic Piano Dead
  • Good Eats
  • What part is this marked .AC ?
  • Photo interrupter Connections
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips

Test & Measurement Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy