• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Test & Measurement Tips

Oscilloscopes, electronics engineering industry news, how-to EE articles and electronics resources

  • Oscilloscopes
    • Analog Oscilloscope
    • Digital Oscilloscope
    • Handheld Oscilloscope
    • Mixed-signal Oscilloscope
    • PC-based Oscilloscopes – PCO
  • Design
  • Calibration
  • Meters & Testers
  • Test Equipment
  • Suppliers
  • Video
  • EE Learning Center
  • FAQs
You are here: Home / Test Equipment / Q/V-band phased-array satellite antennas target next-generation satellites

Q/V-band phased-array satellite antennas target next-generation satellites

July 13, 2021 By Lee Teschler Leave a Comment

A new phased-array user terminal is specifically designed for operation in the higher millimeter-wave (MMW) frequency bands for evolving next-generation communication satellites.

The new low-profile antenna, based on ThinKom’s patented VICTS (Variable Inclination thinkkomContinuous Transverse Stub) technology, will operate in the Q- and V-band frequencies (37.5-42.5 GHz and 47.2-51.4 GHz). These bands have been designated for adoption by major satellite operators in low-, medium-, geostationary and highly elliptical orbits (LEO, MEO, GEO and HEO).

“This new phased-array development is timed to fully enable the upcoming frequency revolution that promises to unlock massive new available bandwidth at these higher MMW frequencies for next-generation LEO and MEO satellite constellations,” said Bill Milroy, Chairman and CTO of ThinKom Solutions. “And it uses our proven VICTS architecture, ensuring it will deliver the efficiency, instantaneous bandwidth, reliability, resiliency and overall availability our customers have come to expect from ThinKom.”

Similar Q-band MMW antennas have already been built and on-satellite tested by ThinKom for Q-band aeronautical and ground-mobile use.

“The new user terminals will include uninterrupted ‘make-before-break’ (MbB) and ‘break-before-make’ (BbM) connectivity options, depending on the requirements of a given application. The MbB terminals will support two simultaneous full-duplex beams that can be independently pointed at two different satellites,” explained Milroy. “The LEO and MEO satellites move rapidly across the sky from horizon to horizon, so the multi-beam capability of the new ThinKom MbB terminal ensures uninterrupted services while switching between rising and setting satellites. It also allows multiple satellites or channels to be bonded, either within the same or even across different constellations, doubling throughput capability. The antenna also supports full frequency and polarization diversity, which is another key enabler for maximizing satellite throughput.”

ThinKom’s full-duplex terminal is 75-cm square and less than 10 cm high, weighing less than 23 Kg and requiring less than 100 W of prime power; yet providing the same functionality as two separate 50-cm-diameter stabilized parabolic dish antenna radome enclosures.

Milroy noted the degree of difficulty in producing viable electronically scanned arrays (ESAs) that can operate in these higher MMW bands, especially in area efficiency, packaging, power density, thermal management and cost. In contrast, the new antennas from ThinKom will provide industry leading spectral efficiency, low power consumption, high power efficiency and low heat generation. They will be offered in configurations for aeronautical and ground-based fixed and mobile applications.

ThinKom Solutions, Inc., 4881 W 145th St, Hawthorne, CA 90250, (310) 371-5486, www.thinkom.com/

You may also like:

  • Havana syndrome
    Microwaves and the Havana Syndrome
  • 5G
    Will 5G be lethal?
  • rental instruments
    The modern economics of renting test instruments
  • no you can't detect ghosts with a gauss meter
    No, you can’t detect ghosts with a gauss meter
  • Lee-Teschler
    Old Scopes aren’t just for Old Codgers

Filed Under: Communication Test, Test Equipment Tagged With: thinkkomsolutions

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

Primary Sidebar

Test & Measurement Handbook


Oscilloscopes Finder

Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Subscribe to our Newsletter

Subscribe to test and measurement industry news, new oscilloscope product innovations and more.

Subscribe Today

EE TRAINING CENTER CLASSROOMS

EE Classrooms

RSS Current EDABoard.com discussions

  • Feedback loop of TL431 based linear regulator?
  • Sampling with MOS transistor and cap
  • Microvia staggered on top of buried via: optimal distance?
  • Calibre PEX
  • Pressing small ICs down when soldering them?

RSS Current Electro-Tech-Online.com Discussions

  • Will Header and socket hold this PCB OK?
  • ASM - Enhanced 16F and long calls - how?
  • data sheet on signetics sd304
  • Relaxation oscillator with neon or...
  • Adding Current Limit Feature to a Buck Converter

Footer

EE World Online Network

  • DesignFast
  • EE World Online
  • EDABoard
  • Electro-Tech Online
  • Analog IC Tips
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Connector Tips
  • Wire and Cable Tips
  • 5G Technology World

Test & Measurement Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us
Follow us on TwitterAdd us on FacebookFollow us on YouTube Follow us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy