• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Test & Measurement Tips

Oscilloscopes, electronics engineering industry news, how-to EE articles and electronics resources

  • Oscilloscopes
    • Analog Oscilloscope
    • Digital Oscilloscope
    • Handheld Oscilloscope
    • Mixed-signal Oscilloscope
    • PC-based Oscilloscopes – PCO
  • Design
  • Calibration
  • Meters & Testers
  • Test Equipment
  • Learn
    • eBooks/Tech Tips
    • FAQs
    • EE Training Days
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Video
    • EE Videos
    • Teardown Videos
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • Leap Awards
    • White Papers
  • Subscribe
You are here: Home / Meters & Testers / Basics of metal detectors

Basics of metal detectors

March 28, 2016 By David Herres 1 Comment

The sensor assembly of a metal detector consists of one or more coils, usually two. An oscillator outputs an alternating current that passes through the send coil, producing a fluctuating magnetic field that penetrates the ground or other layer that is opaque to visible light.

The fluctuating magnetic field induces eddy currents in any conductive material that is within range. These eddy currents, in turn, produce another magnetic field, which causes current to flow in the receive coil. The induced current can be amplified and directed to earphones or a gauge and the operator can interpret the display to ascertain the size, depth and nature of the material.

This system can discriminate between metals every metal has a different phase response when exposed to ac. However, some metals (such as tin foil and gold) have similar phase responses. Thus, improper tuning can increase the risk of passing over a valuable find.

A discriminator, or differentiator as it is also called cancels the signal generated by unwanted metals and ground mineralization. It can be made more or less aggressive by adjusting a knob on the control panel. A difficulty is that if this function is set too high, the signal from a gold coin or other valuable object may be rejected. Similarly the overall sensitivity can be adjusted.

The operator can adjust settings and learn to interpret the metal detector output by intentionally burying silver, copper, gold, aluminum, iron and other objects at measured depths and seeing how the instrument reacts.

metal detector
One simple induction-balance detector circuit uses a 555 timer IC as the oscillator for the transmit coil. The receive coil lies in the input of a preamp which, in turn, sends a signal to another 555 timer used to generate an audio signal when the two coils are out of balance.

The original induction balance coil system consisted of two identical coils located on top of one another. Alternatives include two coils in a D shape, mounted back-to-back to form a circle. Another improvement was detectors which could cancel out the effect of mineralization in the ground.

Another kind of metal detector uses pulse induction. Beat-frequency oscillator and induction-balance machines both use a uniform ac signal at a low frequency. In contrast, the pulse induction machine magnetizes the ground with a relatively powerful, momentary current through a search coil. In the absence of metal, the field decays at a uniform rate. Measuring the time it takes to fall to zero volts gives a reading indicating no metal present. If metal is present when the machine fires, a small eddy current will be induced in the metal and the time for sensed current decay rises. Though these time differences are minute, modern electronics can measure them accurately and identify the presence of metal at reasonable distances. Pulse machines are also mostly impervious to the effects of mineralization.

Metal detectors are used to find valuable coins, lost objects, archeological artifacts, bullets and other metal objects in wounded patients, concealed guns and bombs at public access points, subterranean mineral deposits, underground pipes and electrical cables, rebar embedded in concrete and other conductive objects of interest.

A portion of Florida’s eastern seaboard consists of sandy beaches known as the Treasure Coast. It is a few miles south of the Kennedy Space Center. In 1715, eleven Spanish ships perished in a fierce hurricane offshore near Vero Beach, Florida. They had departed seven days earlier from Havana, Cuba, and were on their way to Spain carrying an enormous amount of silver and gold coins. Some of them, along with other artifacts, are continually washed ashore 300 years later. Many of them remain under a thin layer of sand.

At low tide, especially after a strong storm, metal detecting enthusiasts can be seen making their way along Treasure Coast beaches attempting to locate and recover Spanish Doubloons and other valuable objects. It is not uncommon for them to recover a gold coin or piece of silver, although often a day’s hard work is unrewarded. One problem is the presence of “tramp” metal objects. These are iron and aluminum junk objects, such as beer can tabs, which are of no value. Premium metal detectors are capable of discriminating between different classes of objects, rejecting iron, for example.

Filed Under: Meters & Testers

Reader Interactions

Comments

  1. jony says

    January 9, 2017 at 8:01 am

    the best metal detectors is working with imaging system because it give you most real results
    http://www.groundnavigator.com/

    Log in to Reply

Leave a Reply Cancel reply

You must be logged in to post a comment.

Primary Sidebar

Featured Contributions

Why engineers need IC ESD and TLP data

Verify, test, and troubleshoot 5G Wi-Fi FWA gateways

How to build and manage a top-notch test team

How to use remote sensing for DC programmable power supplies

The factors of accurate measurements

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE TRAINING CENTER

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“test
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

  • Identification of a 6 pin smd chip (sto-23-6) marked E2
  • Dynacord enter protect
  • IGBTs without negative gate drive
  • Need suggestions in task NI6363 retrigger (analog trigger)
  • Monte-Carlo simulation error on ADE-XL

RSS Current Electro-Tech-Online.com Discussions

  • Does US electric code allow branching ?
  • Faulty heat air gun (dc motor) - problem to locate fault due to Intermittent fault
  • Fun with AI and swordfish basic
  • Sump pit water alarm - Kicad 9
  • turbo jet fan - feedback appreciated.
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips

Test & Measurement Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy