• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Test & Measurement Tips

Oscilloscopes, electronics engineering industry news, how-to EE articles and electronics resources

  • Oscilloscopes
    • Analog Oscilloscope
    • Digital Oscilloscope
    • Handheld Oscilloscope
    • Mixed-signal Oscilloscope
    • PC-based Oscilloscopes – PCO
  • Design
  • Calibration
  • Meters & Testers
  • Test Equipment
  • Learn
    • eBooks/Tech Tips
    • FAQs
    • EE Training Days
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Video
    • EE Videos
    • Teardown Videos
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • Leap Awards
    • White Papers
  • Subscribe
You are here: Home / Oscilloscopes / Fast Fourier Transforms

Fast Fourier Transforms

October 10, 2014 By David Herres 1 Comment

By David Herres

A previous article discussed the Fourier Transform. Now we turn to a variation, the Fast Fourier Transform (FFT), which has assumed great importance since it emerged in 1965, based largely on early nineteenth-century work. To review, the Fourier Transform provides a theoretical basis for moving back and forth between time-domain and frequency-domain views of moving matter and energy. The only problem was that as originally formulated, this methodology was not accessible for most purposes because the mathematics was far too complex.

An FFT rapidly computes such transformations by factorizing the discrete Fourier transform (DFT) matrix into a product of sparse (mostly zero) factors. But there are several ways to compute FFTs. Different FFT algorithms are applicable in a wide range of mathematical operations including basic complex numeration, group theory, number theory and beyond. Using FFTs, we come up with precisely the same results as in the Fourier Transform, the only difference being that it is much faster. A modern mixed-domain oscilloscope such as the Tektronix MDO3104 can move easily from the time domain view of an electrical signal to a frequency domain graphical representation simply by a push of the button or from a remote computer, a click of the mouse.

Interestingly, distortions may be introduced while rounding off within the conventional Fourier Transform protocol. So the FFT is actually more accurate than its old-world ancestor.
Though there are numerous FFT algorithms that all involve different operating principles, the bottom line is that they all  have the ability to vastly simplify and speed up the two-way process of translating between time and frequency domains.

The principal FFT algorithm is the Cooley-Tukey protocol. This decisive breakthrough, which happened in 1965, resembled a discovery attributed to Carl Friedrich Gauss around 1805. But Gauss’ insight had never been broadly applied, so the Cooley-Tukey innovation constituted the decisive development that let oscilloscope signal analysis move forward in a meaningful way.

Wikipedia has a page devoted to the FFT which goes into the Cooley-Tukey method. To summarize the approach, it s is a divide-and-conquer algorithm that recursively divides a DFT of any size N = N1N2 into many smaller DFTs of sizes N1 and N2, along with on the order N multiplications by complex roots of unity.

time domain view
Complex real-time signals as shown in this time-domain view on a Tektronix MDO3104 oscilloscope, can easily be translated into a frequency-domain view using FFTs.

The best known use of the Cooley–Tukey algorithm is to divide the transform into two pieces of size N/2 at each step. Also, because the Cooley–Tukey algorithm breaks the DFT into smaller pieces, it can be combined with any other of the many algorithms for the DFT.

FFTs are subject to ongoing efforts aimed at further simplification and acceleration. Areas for future exploration include fully functional artificial intelligence. To this end, it is possible that Fourier analysis along with the FFT implementation will provide the basis for an eventual accommodation with some of the more turbulent aspects of our destiny in our personal time and frequency domains.

 

Filed Under: Oscilloscopes, Test Equipment

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

Primary Sidebar

Featured Contributions

Why engineers need IC ESD and TLP data

Verify, test, and troubleshoot 5G Wi-Fi FWA gateways

How to build and manage a top-notch test team

How to use remote sensing for DC programmable power supplies

The factors of accurate measurements

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE TRAINING CENTER

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“test
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

  • Guardian of vehicle crisis: Supercapacitors ensure safe opening of car doors
  • Core loss in output inductor of 500W Two Transistor forward?
  • GanFet power switch starts burning after 20 sec
  • Colpitts oscillator
  • problem identifying pin purpose on PMA5-83-2WC+ amplifier

RSS Current Electro-Tech-Online.com Discussions

  • LED circuit for 1/6 scale diorama
  • Electronic board faulty?!?
  • Can I use this charger in every country?
  • using a RTC in SF basic
  • An Update On Tarrifs
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips

Test & Measurement Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy